
Percolation and the complexity of games

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L39

(http://iopscience.iop.org/0305-4470/20/1/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987) L39-L43. Printed in the UK 

LElTER TO THE EDITOR 

Percolation and the complexity of gamest 

Constantin P BachasSO and Wilfried F Wolff 117 
$ Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA 
1 1  Department of Applied Physics, Stanford University, Stanford, CA 94305, USA 

Received 18 September 1986 

Abstract. We establish a connection between a facet of the complexity of games and the 
problem of percolation on the underlying tree of winning strategies. We show that the 
complexity is minimal for both regular and totally random trees and identify a class of 
trees for which it is maximal. 

A large number of natural and artificial systems have an exact or approximate hierar- 
chical organisation. A useful tool in analysing them has been the renormalisation 
group and the concept of self-similarity. It is, however, precisely the absence of 
self-similarity which characterises the most complex and interesting systems. In an 
effort to classify hierarchical structures Huberman and Hogg (1986) introduced a 
notion of complexity which measures the degree of non-isomorphism at all levels of 
the hierarchy and which was numerically shown to be small not only for regular 
(uniformly multifurcating) but also for totally random trees. A physical manifestation 
of such a notion of complexity is the speed of relaxation of hierarchical structures 
(Bachas and Huberman 1986): regular ones relax fastest and structural noise is 
irrelevant. This behaviour should be contrasted to the Shannon entropy or detailed 
(rather than coarse-grained) information content which is minimised for regular, but 
maximised for random trees. Similar ideas in a different context, that of forecasting 
the itinerary sequence in a chaotic system, have also been advocated for by Grassberger 
(1986). 

In this letter we will consider yet another manifestation of this notion of complexity, 
namely in the context of percolation on arbitrary trees and show how it is related to 
the complexity of games and the time requirement of search algorithms. 

Consider a game whose duration is, for simplicity, taken to be exactly n moves. 
At each move the player is faced with several options, some of which lead to a forced 
loss assuming an infinitely intelligent opponent. The remaining non-losing strategies 
form a tree with n levels of hierarchy which we will refer to, by slight abuse of notation, 
as the winning tree of the game. Regular, i.e. uniformly multifurcating, winning trees 
correspond to simple games: an example would be a game in which the player is at 
each step presented with a choice of four colours (red, green, blue and white) and has 
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to pick either blue or white to avoid losing immediately. This is to be contrasted with 
complex games such as, for instance, chess with a fixed number of total moves, for 
which the tree of non-losing strategies is certainly not regular since certain bad moves 
might, e.g., allow your opponent to checkmate you for the rest of the game, thereby 
limiting your options considerably. A little thought will convince the reader that more 
generally hard games are characterised by a sensitive history dependence, which is 
manifested as a lack of self-similarity of the winning tree, whose subtrees are not 
identical to each other and to the whole. Put differently, the checkmate positions 
commonly found in newspapers are not all equally hard. 

To make these ideas more precise, consider a monkey which at each step of the 
game decides at random to pursue every one of the available options with probability 
p .  We of course allow the monkey to pursue more than one option at any given time, 
i.e. to play simultaneously on several boards, since otherwise its chances of winning 
against an infinitely smart opponent would always be vanishingly small. We will say 
that the monkey does not lose if, throughout the game, it has pursued at least one of 
the non-losing strategies. When the number of moves becomes arbitrarily large this 
can only happen if p is greater than the threshold p c  for percolation from the root to 
a leaf of the winning tree. The smaller p c ,  the simpler the game, since the randomly 
playing monkey may pursue fewer options and still not lose; we may thus define p c  
as a measure for the complexity of the game. 

An important remark on semantics is in order here: for any particular game, p c  is 
really a measure of the lack of fault tolerance, rather than of the algorithmic complexity, 
defined as the effort necessary for programming a machine to play the game successfully. 
This is because, irrespective of the structure of the winning tree, one particular winning 
strategy might be easy to follow with a simple set of instructions. With this caveat in 
mind, we will nevertheless continue to refer to p c  as a complexity since ( a )  it is the 
only sensible such measure one can assign to the unlabelled tree of winning strategies 
(i.e. to the ensemble of games with the same topological winning tree) and ( b )  the 
lack of fault tolerance is, after all, one aspect of the complexity of real games. 

To study percolation on general trees we will use the fact that the probability Q( t )  
that no path percolates from the root to a leaf of a subtree t satisfies the recursion relation 

where 6 is the number of branches emanating from the root of t and t ,  , . . . , tb label 
the corresponding subtrees (see figure 1 ) .  

We first consider the simplest case, namely percolation on regular or uniform trees, 
which have the same branching ratio 6 at each node of every generation. Variations 
of this problem have already been considered in studying the mean-field theory of 
percolation (Fisher and Essam 1961, Essam 1980, Stauffer 1985) and more recently in 

Figure 1. A tree t and its subtrees I , ,  . . . , ih  at the first hierarchy level used in the recurrence 
relation ( 1 ) .  
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the context of spreading activation in computer networks (Hogg and Huberman 1986) 
and also in studying the time requirements of certain heuristic searches (Karp and 
Pearl 1983, Stone and Sipala 1986). The probability Qn that in a uniform tree with n 
generations no path percolates then satisfies the recursion relation 

Qn = (1 -P+PQn-I)b* (2) 

Equation (2) has the fixed point Q = 1,  corresponding to no percolation. This fixed 
point becomes unstable for p > p:nifDrm = 1/ b, signalling the appearance with a finite 
probability of a percolating cluster from the root to the bottom of the tree. 

Clearly, the fatter the tree, i.e. the larger the branching ratio b, the smaller the 
percolation threshold, since fat trees are harder to cut. Although one could argue that 
the complexity of a game should increase whenever some winning strategies are 
discarded (e.g. keeping only white as a winning choice in the aforementioned game) 
this is a rather trivial effect. Therefore we will limit ourselves in the following to games 
whose trees have a fixed average branching ratio b per generation or a fixed multiplica- 
tion rate of non-losing strategies per move. This is reminiscent of ultradiffusion where 
fatter trees relax faster and where one must fix the tree silhouette in order to study 
the effect of the tree structure on the dynamics (Bachas and Huberman 1986). 

We shall now show that p c  is indeed minimised for regular trees as it should be 
since these trees correspond to the simplest games. 

Theorem 1. The critical threshold for percolation p c  in a tree with average branching 
ratio b satisfies 

p c  p y i f o r m  - - 1/ b. 

Proof: Consider an arbitrary tree t with average branching ratio b;  this means that the 
total number of nodes at the first hierarchy level is b, at the second b2, at the third b3,  
etc, but the branching rate need not be evenly distributed among all members of a 
given generation. The probability Q ( t )  for no percolation on t satisfies 

(3) 

where t l ,  . . . , tb are the (not necessarily identical) subtrees with roots at the first 
hierarchy level. The inequality follows from the well known fact that the arithmetic 
mean is always bigger or equal to the geometric mean. At the second step we have 

Q ( t ) = ( l - P + P Q ( t i ) )  . . .  ( l - p + P Q ( t b ) ) 3 ( l - p + P [ Q ( t , )  . . .  Q(tb)l"b}b 

Q( t l )  . Q( t b )  3 { 1 - p  + p [  Q( il) . . Q( ?b2)]1/b2}b2 (4) 

where i l , .  . . , i b2  are the b2 subtrees with roots at the second hierarchy level; this 
follows from the recursion relation (1) and the inequality (3). Combining inequalities 
(3) and (4) we obtain 

Q( C )  3 ( 1  - p  + p {  1 - p  + p [  Q( il) . . . Q( i b 2 ) ] 1 ' b 2 } b ) b  

Repeating this procedure n times we finally get 

Q(t) ~ f ' " ' ( 0 )  

where f n )  is the nth iterate of the function f ( x )  = (1 - ~ + p x ) ~ .  The right-hand side 
is the probability for no percolation on a regular tree, which completes the proof. 
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Next, we consider the case of random trees which are constructed by allowing the 
branching ratio x at every node to be an independent random variable with distribution 
P(x)  and average value (x) = b. After deleting bonds with probability 1 - p  the cluster 
connected to the root is another random tree with modified probability distribution 

and average branching ratio ( y )  = pb. Here (G) is the binomial cofficient. The probability 
for percolation on the original tree is equal to the probability that the modified random 
tree survives for an infinite number of generations. From the theory of branching 
processes (Hams 1963) it is known that the latter probability is finite when the average 
branching ratio is bigger than one and zero when it is smaller than one, from which 
we deduce that the critical probability for percolation on the original random tree is 
given by (y)=p,b= 1. 

The above argument shows that random trees with average branching ratio (x) = b 
have the same percolation threshold as regular trees with branching ratio b and 
consequently, in view of theorem 1 ,  correspond to games of minimal complexity. This 
is in agreement with the measure of complexity introduced by Huberman and Hogg 
(1986) as well as with the dynamic exponent that characterises ultradiffusion with 
long-range hopping (Bachas and Huberman 1986). Intuitively, random trees have 
minimal complexity because they can be made more and more regular by coarse- 
graining, i.e. by defining a new elementary move as a series of consecutive old moves. 

We have thus demonstrated that the winning trees of truly complex games (for 
which p c >  l /b)  form a set of measure zero. We now proceed to identify a class of 
such trees, describing the winning strategies of maximally complex games (for which 
p c =  1) .  These are constructed by letting the left-half nodes of every generation give 
rise to 2b - 1 offsprings, while the rest continue as unbranched paths to the bottom, 
as shown in figure 2,  so that the average branching ratio is b. To see why the percolation 
threshold is equal to one for such a tree, note that if p < 1 then the leftmost path as 
seen in figure 2, from the root to the bottom is cut with probability one at a finite 
hierarchy level m away from the root; the remaining b" - 1 nodes generate subtrees 
which (2b - 1)-furcate for a finite number of steps and then continue as unbranched 
paths thereafter. Clearly these subtrees cannot percolate if p < 1 so that p c  = 1 as 
claimed before. 

An intuitive explanation why this game is of maximal complexity is that there is 
zero tolerance for errors since the player must either follow the strategy corresponding 

Figure 2. An example of a maximally complex tree; the left-half nodes of every generation 
give rise to three offspring, while the rest continue as unbranched paths to the bottom. 
The average branching ratio is b = 2. 
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to the leftmost branch or else will eventually be led to a situation where non-losing 
moves are unique. This same class of trees also leads to slowest relaxation in ultra- 
diffusion (Bachas and Huberman 1986). It would be interesting to see if there exists 
a quantitative relationship between the dynamical critical exponent and the percolation 
threshold p E .  

Finally we would like to ,point out another possible interpretation of our results, 
namely in the context of heuristic searches. Following Karp and Pearl (1983) one can 
consider the problem of finding an optimal path on a tree whose edges are assigned 
the cost 1 with probability p and 0 with probability 1 - p .  A ‘uniform cost’ algorithm 
that performs this task is one that, starting from its leftmost node, expands the front 
of nodes reachable with a given cost from the root of the tree until it finds a leaf at 
the bottom of the tree. Karp and Pearl show that for regular trees this algorithm runs 
efficiently (linear time requirement) if the 0-cost edges have a finite probability to 
percolate and has an exponential time requirement otherwise. Since, as shown before, 
these 0-cost edges can never percolate on a sufficiently complex tree we would then 
expect the running requirement for these trees to always be exponential. It would be 
very interesting to analyse this problem in more detail but this is beyond the scope of 
this letter. 

We thank Bernard0 Huberman for many enlightening discussions. 
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